3.426 \(\int (d-c^2 d x^2)^{3/2} (a+b \cosh ^{-1}(c x))^n \, dx\)

Optimal. Leaf size=450 \[ -\frac {3 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{n+1}}{8 b c (n+1) \sqrt {c x-1} \sqrt {c x+1}}-\frac {d 2^{-2 (n+3)} e^{-\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}+\frac {d 2^{-n-3} e^{-\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}-\frac {d 2^{-n-3} e^{\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}+\frac {d 2^{-2 (n+3)} e^{\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}} \]

[Out]

-3/8*d*(a+b*arccosh(c*x))^(1+n)*(-c^2*d*x^2+d)^(1/2)/b/c/(1+n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)-d*(a+b*arccosh(c*x)
)^n*GAMMA(1+n,-4*(a+b*arccosh(c*x))/b)*(-c^2*d*x^2+d)^(1/2)/(2^(6+2*n))/c/exp(4*a/b)/(((-a-b*arccosh(c*x))/b)^
n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)+2^(-3-n)*d*(a+b*arccosh(c*x))^n*GAMMA(1+n,-2*(a+b*arccosh(c*x))/b)*(-c^2*d*x^2+
d)^(1/2)/c/exp(2*a/b)/(((-a-b*arccosh(c*x))/b)^n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)-2^(-3-n)*d*exp(2*a/b)*(a+b*arcco
sh(c*x))^n*GAMMA(1+n,2*(a+b*arccosh(c*x))/b)*(-c^2*d*x^2+d)^(1/2)/c/(((a+b*arccosh(c*x))/b)^n)/(c*x-1)^(1/2)/(
c*x+1)^(1/2)+d*exp(4*a/b)*(a+b*arccosh(c*x))^n*GAMMA(1+n,4*(a+b*arccosh(c*x))/b)*(-c^2*d*x^2+d)^(1/2)/(2^(6+2*
n))/c/(((a+b*arccosh(c*x))/b)^n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.56, antiderivative size = 450, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {5713, 5701, 3312, 3307, 2181} \[ -\frac {d 2^{-2 (n+3)} e^{-\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}+\frac {d 2^{-n-3} e^{-\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}-\frac {d 2^{-n-3} e^{\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}+\frac {d 2^{-2 (n+3)} e^{\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}-\frac {3 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{n+1}}{8 b c (n+1) \sqrt {c x-1} \sqrt {c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[(d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x])^n,x]

[Out]

(-3*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^(1 + n))/(8*b*c*(1 + n)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (d*Sqrt
[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, (-4*(a + b*ArcCosh[c*x]))/b])/(2^(2*(3 + n))*c*E^((4*a)/b)
*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(-((a + b*ArcCosh[c*x])/b))^n) + (2^(-3 - n)*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCos
h[c*x])^n*Gamma[1 + n, (-2*(a + b*ArcCosh[c*x]))/b])/(c*E^((2*a)/b)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(-((a + b*Arc
Cosh[c*x])/b))^n) - (2^(-3 - n)*d*E^((2*a)/b)*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, (2*(a +
b*ArcCosh[c*x]))/b])/(c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*((a + b*ArcCosh[c*x])/b)^n) + (d*E^((4*a)/b)*Sqrt[d - c^2
*d*x^2]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, (4*(a + b*ArcCosh[c*x]))/b])/(2^(2*(3 + n))*c*Sqrt[-1 + c*x]*Sqrt[
1 + c*x]*((a + b*ArcCosh[c*x])/b)^n)

Rule 2181

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> -Simp[(F^(g*(e - (c*f)/d))*(c +
d*x)^FracPart[m]*Gamma[m + 1, (-((f*g*Log[F])/d))*(c + d*x)])/(d*(-((f*g*Log[F])/d))^(IntPart[m] + 1)*(-((f*g*
Log[F]*(c + d*x))/d))^FracPart[m]), x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5701

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbo
l] :> Dist[(-(d1*d2))^p/c, Subst[Int[(a + b*x)^n*Sinh[x]^(2*p + 1), x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c
, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && IGtQ[p + 1/2, 0] && (GtQ[d1, 0] && LtQ[d2, 0]
)

Rule 5713

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((-d)^IntPart[p]*(
d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(1 + c*x)^p*(-1 + c*x)^p*(a + b*Ar
cCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[c^2*d + e, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )^n \, dx &=-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int (-1+c x)^{3/2} (1+c x)^{3/2} \left (a+b \cosh ^{-1}(c x)\right )^n \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int (a+b x)^n \sinh ^4(x) \, dx,x,\cosh ^{-1}(c x)\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \left (\frac {3}{8} (a+b x)^n-\frac {1}{2} (a+b x)^n \cosh (2 x)+\frac {1}{8} (a+b x)^n \cosh (4 x)\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {3 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{8 b c (1+n) \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int (a+b x)^n \cosh (4 x) \, dx,x,\cosh ^{-1}(c x)\right )}{8 c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int (a+b x)^n \cosh (2 x) \, dx,x,\cosh ^{-1}(c x)\right )}{2 c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {3 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{8 b c (1+n) \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int e^{-4 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{16 c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int e^{4 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{16 c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int e^{-2 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{4 c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int e^{2 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{4 c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {3 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{8 b c (1+n) \sqrt {-1+c x} \sqrt {1+c x}}-\frac {4^{-3-n} d e^{-\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {2^{-3-n} d e^{-\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {2^{-3-n} d e^{\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {4^{-3-n} d e^{\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.21, size = 384, normalized size = 0.85 \[ \frac {d^2 4^{-n-3} e^{-\frac {4 a}{b}} \sqrt {\frac {c x-1}{c x+1}} (c x+1) \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^{-2 n} \left (3\ 2^{2 n+3} e^{\frac {4 a}{b}} \left (a+b \cosh ^{-1}(c x)\right ) \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^{2 n}+b \left (-2^{n+3}\right ) (n+1) e^{\frac {2 a}{b}} \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^n \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )^n \Gamma \left (n+1,-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+b 2^{n+3} (n+1) e^{\frac {6 a}{b}} \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^n \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^n \Gamma \left (n+1,\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )-b (n+1) e^{\frac {8 a}{b}} \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{2 n} \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )^n \Gamma \left (n+1,\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+b (n+1) \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^n \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )^{2 n} \Gamma \left (n+1,-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )\right )}{b c (n+1) \sqrt {d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x])^n,x]

[Out]

(4^(-3 - n)*d^2*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(a + b*ArcCosh[c*x])^n*(3*2^(3 + 2*n)*E^((4*a)/b)*(a + b*
ArcCosh[c*x])*(-((a + b*ArcCosh[c*x])^2/b^2))^(2*n) + b*(1 + n)*(a/b + ArcCosh[c*x])^(2*n)*(-((a + b*ArcCosh[c
*x])/b))^n*Gamma[1 + n, (-4*(a + b*ArcCosh[c*x]))/b] - 2^(3 + n)*b*E^((2*a)/b)*(1 + n)*(a/b + ArcCosh[c*x])^n*
(-((a + b*ArcCosh[c*x])^2/b^2))^n*Gamma[1 + n, (-2*(a + b*ArcCosh[c*x]))/b] + 2^(3 + n)*b*E^((6*a)/b)*(1 + n)*
(-((a + b*ArcCosh[c*x])/b))^n*(-((a + b*ArcCosh[c*x])^2/b^2))^n*Gamma[1 + n, (2*(a + b*ArcCosh[c*x]))/b] - b*E
^((8*a)/b)*(1 + n)*(a/b + ArcCosh[c*x])^n*(-((a + b*ArcCosh[c*x])/b))^(2*n)*Gamma[1 + n, (4*(a + b*ArcCosh[c*x
]))/b]))/(b*c*E^((4*a)/b)*(1 + n)*Sqrt[d - c^2*d*x^2]*(-((a + b*ArcCosh[c*x])^2/b^2))^(2*n))

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{n}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))^n,x, algorithm="fricas")

[Out]

integral((-c^2*d*x^2 + d)^(3/2)*(b*arccosh(c*x) + a)^n, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))^n,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.24, size = 0, normalized size = 0.00 \[ \int \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))^n,x)

[Out]

int((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))^n,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))^n,x, algorithm="maxima")

[Out]

integrate((-c^2*d*x^2 + d)^(3/2)*(b*arccosh(c*x) + a)^n, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^n\,{\left (d-c^2\,d\,x^2\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))^n*(d - c^2*d*x^2)^(3/2),x)

[Out]

int((a + b*acosh(c*x))^n*(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(3/2)*(a+b*acosh(c*x))**n,x)

[Out]

Timed out

________________________________________________________________________________________